A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls

نویسندگان

  • P. K. SEN
  • P. W. CARPENTER
  • P. K. Sen
  • P. W. Carpenter
  • S. Hegde
چکیده

A theory is described for propagation of vortical waves across alternate rigid and compliant panels. The structure in the fluid side at the junction of panels is a highly vortical narrow viscous structure which is idealized as a wave driver. The wave driver is modelled as a ‘half source cum half sink’. The incoming wave terminates into this structure and the outgoing wave emanates from it. The model is described by half Fourier–Laplace transforms respectively for the upstream and downstream sides of the junction. The cases below cutoff and above cutoff frequencies are studied. The theory completely reproduces the direct numerical simulation results of Davies & Carpenter (J. Fluid Mech., vol. 335, 1997, p. 361). Particularly, the jumps across the junction in the kinetic energy integral, the vorticity integral and other related quantities as obtained in the work of Davies & Carpenter are completely reproduced. Also, some important new concepts emerge, notable amongst which is the concept of the pseudo group velocity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steep. Short-Crested Waves and Related Phenomena

Steep, short-crested waves, as well as a large variety of three-dimensional propagating wave patterns have been created in laboratory, utilizing a plunging half-cone. Monochromatic waves, over a range of frequencies and amplitudes through breaking and including soliton wave groups near resonance, have been observed and studied in a small wave flume. This monochromatic wavemaker creates complex ...

متن کامل

Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint

In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus,  it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...

متن کامل

Reflection of Waves in a Rotating Transversely Isotropic Thermoelastic Half-space Under Initial Stress

The present paper concerns with the effect of initial stress on the propagation of plane waves in a rotating transversely isotropic medium in the context of thermoelasticity theory of GN theory of type-II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasi-longitudinal wave. The slowest of them is a thermal wave. ...

متن کامل

THE EFFECT OF PURE SHEAR ON THE REFLECTION OF PLANE WAVES AT THE BOUNDARY OF AN ELASTIC HALF-SPACE

This paper is concerned with the effect of pure shear on the reflection from a plane boundary of infinitesimal plane waves propagating in a half-space of incompressible isotropic elastic material. For a special class of constitutive laws it is shown that an incident plane harmonic wave propagating in the considered plane gives rise to a surface wave in addition to a reflected wave (with angle o...

متن کامل

Non -propagating Waves and Behavior of Curtainwall-pile Breakwaters

Abstract Usually, evanescent modes or non-propagating waves are produced when a propagating incident wave impinges on an interface between two media or materials such as curtainwall-pile breakwater (CPB) at a subcritical angle and decay with distance from interface. To achieve an effective prediction of hydrodynamic performance of CPB and overcome the problem of underestimation of energy loss, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009